Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
F(s(x), s(y), s(z)) → MIN(s(x), min(s(y), s(z)))
F(s(x), s(y), s(z)) → P(min(s(x), max(s(y), s(z))))
F(s(x), s(y), s(z)) → MIN(s(y), s(z))
F(s(x), s(y), s(z)) → MIN(s(x), max(s(y), s(z)))
MIN(s(x), s(y)) → MIN(x, y)
MAX(s(x), s(y)) → MAX(x, y)
F(x, y, 0) → MAX(x, y)
F(x, 0, z) → MAX(x, z)
F(0, y, z) → MAX(y, z)
F(s(x), s(y), s(z)) → MAX(s(y), s(z))
F(s(x), s(y), s(z)) → MAX(s(x), max(s(y), s(z)))

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
F(s(x), s(y), s(z)) → MIN(s(x), min(s(y), s(z)))
F(s(x), s(y), s(z)) → P(min(s(x), max(s(y), s(z))))
F(s(x), s(y), s(z)) → MIN(s(y), s(z))
F(s(x), s(y), s(z)) → MIN(s(x), max(s(y), s(z)))
MIN(s(x), s(y)) → MIN(x, y)
MAX(s(x), s(y)) → MAX(x, y)
F(x, y, 0) → MAX(x, y)
F(x, 0, z) → MAX(x, z)
F(0, y, z) → MAX(y, z)
F(s(x), s(y), s(z)) → MAX(s(y), s(z))
F(s(x), s(y), s(z)) → MAX(s(x), max(s(y), s(z)))

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 9 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MAX(s(x), s(y)) → MAX(x, y)

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MAX(s(x), s(y)) → MAX(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(s(x1)) = 5/4 + (15/4)x_1   
POL(MAX(x1, x2)) = x_1 + (13/4)x_2   
The value of delta used in the strict ordering is 85/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(s(x), s(y)) → MIN(x, y)

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MIN(s(x), s(y)) → MIN(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(MIN(x1, x2)) = x_1 + (13/4)x_2   
POL(s(x1)) = 5/4 + (15/4)x_1   
The value of delta used in the strict ordering is 85/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y), s(z)) → F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.